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The solution of an axially symmetr ic  s ingle-phase Stefan problem with a boundary condition of 
the third kind is reduced to the solution of a nonlinear integrodifferential  equation, the lat ter  
solution being obtained with the aid of the method of successive approximations.  

An effective method for obtaining solutions of two-dimensionally,  axially, and spherical ly symmet r i c  
single-phase one-dimensional  Stefan problems concerning freezing,  with conditions on the known boundary 
being constant with time and with zero  initial expansion of the domain in which the solution is sought, is 
found to be one in which the Stefan problem is reduced to a nonlinear integrodifferential  equation with a 
subsequent application of an i terational  p rocess  [1-4]. 

We consider  the following problem: 

p c - -  = k - -  . - -  r in D*, (1) 
r Or 

k a T  = h ~ ( T - -  To) for r = a, (2) 
Or 

d6 
k aT = hz(T ~ _ Tf) + pL :dr for r : 6 (~), (3) 

Or 

T = T s : const for r = 6 (x), (4) 

6 = a for T = 0. (5) 

Here D* = {r, ~: a < r < 6(T), 0 < 7 < M < co} defines the domain of variat ion of the var iables  in which the 
solution of the problem is to be determined; a is the radius of a cyl indrical  tube along which a cold liquid 
with temperature  T O = const flows; h w is the heat t r ans fe r  coefficient of the cold liquid with the bounding 
surface;  T/,  a constant,  is the temperature  of the liquid washing the tube (T/ >- Tf); r = 6(v) is the t ime-  
dependent position of the phase-change boundary. The boundary condition in the form (3) makes it possible 
to take into account the influence of the convective heat t ransfer  on the intensity of growth of the "solid" 
pha se. 

We introduce the dimensionless quantities. 

r k 
x = ~ ;  t :  't'; 

a pca ~ 

We rewri te  the problem (1)-(5) in dimensionless  form:  

au 1 0 au 
- - = - - ' ~ X  
at x ax ax 

6 T - - T  t A - -  , u = - -  

a T O - -  T l 

in D, (6) 

au 
- - ~ - ~ z ( u - - 1 )  for x = l ,  (7) 
Ox 

dA 
au _ [~ +(9 for x = h ( t ) ,  (8) 
Ox dt 
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Fig .  1. Na ture  of the c o n v e r g e n c e  of  t h e i t e r a t i o n a l  p r o c e s s .  The s u b s c r i p t s  
0, 1, 2 r e f e r ,  r e s p e c t i v e l y ,  to the r e s u l t s  of the ze ro th ,  the f i r s t ,  and the 
second  approx ima t ion  (~ = 2; # = 0.5; 9 = --5).  

F ig .  2. Pos i t ion  of  the phase  t r ans i t i on  boundary  v e r s u s  the t ime (second 
app rox ima t ion  r e s u l t s ) :  C u r v e s  1 and 4, [3 = 0.05; Curves  2 and 5, fl = --0.10;  
C u r v e s  3 and 6, fl = --0.15;  Dashed  l ine,  a = 0.5; Solid l ine,  a = 2.0. 

u = 0 for x = h (t), (9) 

A = I for t -- 0, (10) 

where  D is  the d i m e n s i o n l e s s  ana log  of  the domain  D*; a = ahw/k  is a d i m e n s i o n l e s s  p a r a m e t e r  of  the p r o -  
b l e m  c h a r a c t e r i z i n g  the heat  t r a n s f e r  in tens i ty  on the tube su r face ;  [3 = ahl /k .  T / - - T f / T 0 - - T  f is a d imens ion -  
l e s s  p a r a m e t e r  of the p r o b l e m  c h a r a c t e r i z i n g  the convec t ive  heat  t r a n s f e r  in tens i ty  on the p h a s e - c h a n g e  
su r f ace ;  9 = L / c (T0- -T  f) is the d i m e n s i o n l e s s  heat  of phase  t rans i t ion .  

We note that  even when [3 = 0 the p r o b l e m  (6)-(10} has no s e l f - s i m i l a r  solution.  

We now c o n s t r u c t  the solut ion of p r o b l e m  (6)-(10). In t eg ra t ing  Eq,  (6) twice with r e s p e c t  to the va r i ab le  
be tween  the l imi t s  o f  1 and x and us ing  the condi t ions  (7) and (9), we obtain,  a f t e r  mak ing  s impl i f i ca t ions ,  

A x 

u = - - c c l n x +  1 + c ,  l n h  ~-  Ot 
1 1 

i!ix + Ou dxdx. 
x Ot 

1 1 

Invoking the condi t ion (8), we wr i te  

I a l n A - -  

A i - -  

(11) 

ili ] Ou - -  x -  dxdx 
x Ot 1 s OUdx= dA l § J 6 +  

1 + a l n h  ~ Ot ~-~-" 
1 

Noting that  O/Dt = a / a A .  dA/d t ,  we solve the r e su l t i ng  r e l a t ionsh ip  for  2X = dA/d t :  

+ ~A(1 + alnA) 
= A ~ i .x (12) 

( l + c ~ l n h )  x - ~ d x - - a  --x x OA dxdx- -~A( l+cr  
1 1 1 

The l imi t ing  th i ckness  of the f rozen  l a y e r  A S is d e t e r m i n e d  f r o m  the condi t ion 2x = 0 and can be ca lcu la ted  
as  the r o o t  of  the t r a n s c e n d e n t a l  equat ion  

C6 
A s ( l + a l n A s ) - -  

Tak ing  the r e l a t ion  (12) into account ,  we can r e w r i t e  the e x p r e s s i o n  (11) in the f o r m  

u = An, 

where  the o p e r a t o r  A ac t s  on the funct ion u(x, A) a c c o r d i n g  to the ru le  

(13) 

(14) 
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Au=czlnA 1-~ ant__c,._,, a l n x  
1 + c~lnh 
A X x x 

[~z+[3A(1 +r A)] [ ll+r In Ajflfxx J oAOU dxdx-- Jflfxx J OU J ] 
1 I l 1 

+ - -  6 1 x  a "" ~YI +czlnA)+CZ~x~X Ou dxdx--(l+alnA)ffx O--~-u dx 
�9 " OA Oh 

1 I 1 

We const ruct  the solution of Eq. (14) in accord  with the i te ra t ional  scheme 

uk+ I = Au k , k ~ O, 

taking as the zero th  approximat ion the expres s ion  

[ I +r162 l n A - - l n x ] .  
u~ l + a l n A  

Noting that the r ight  side of Eq. 
condition (10), we obtain 

(15) 

(16) 

(12) does not contain the t ime explici t ly and taking into account the init ial  

t --_ Bu, (17) 

where  the opera to r  I3 is defined as follows: 
A A x 

i f Ou dx--a, I '1--- ~X Ou dxdx--tph(1.-l-czlnA) (l+cr o x 0A J x ,J 0--A 
Bu = v x I dA. (18) 

l cr + [ ~ h ( l +  alnA) 

We define the t ime taken for  the des i r ed  phase t rans i t ion  boundary to r each  a given posi t ion,  for  the c o r r e -  
sponding approximat ions  (15), by the re la t ion  

t h = Bu h. 

The exp res s ions  (17), and, cor respondingly ,  the exp re s s ions  (18), de te rmine ,  in genera l ,  a function t = t 
(A), inverse  to the des i r ed  function; however ,  in physical ly  r e a l  c a s e s ,  there  is a one- to-one  c o r r e s p o n -  
dence between the d i rec t  function A = A (t) and i ts  inverse .  

The convergence  of the i te ra t iona l  p roce s s  according  to the scheme (15)-(18) in the range of va r ia t ion  
cons idered  for the d imens ion less  p a r a m e t e r s  of the p rob lem is found to  be comple te ly  sa t i s fac tory ;  this is 
evident f r o m  Fig.  1 where the calcula ted cu rves  A = A(t) a re  shown for  the zeroth ,  f i r s t ,  and second approx i -  
mat ions  for  one of the se ts  of va lues  of a ,  fi, ~p. The re la t ive  di f ference in the r e su l t s  of the second and 
f i r s t  approximat ions  amounts  to a value of 1.5-2%. 

F igure  2 shows the r e s u l t s  obtained for A = A(t) using the second approximat ion for  s e v e r a l  va lues  of 
the defining p a r a m e t e r s  of the p rob lem.  

p is  the density of medium; 
c is  the specific heat capaci ty  of medium; 
T is the t empera tu re ;  
~- is  the t ime;  
k is the t he rm a l  conductivity; 
r is the space coordinate;  
D is 
hw is  
T O is 
h l is 
Tf  is 
L is  
6 is 
x is  

NOTATION 

the range of va r i ab le  var ia t ion;  
the heat t r a n s f e r  coefficient  f rom tube wall  to coolant; 
coolant t empe ra tu r e ;  
the heat t r a n s f e r  coefficient  between liquid phase and phase  t rans i t ion  sur face ;  
the t e m p e r a t u r e  at the boundary of phase t ransi t ion;  
the heat  of phase  t ransi t ion;  
the th ickness  of f rozen solid layer ;  
the d imens ion less  space coordinate;  
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A is the 
u is the 
a is the 
t~ is the 

is the 
A S is the 
A is the 
B is the 

d imens ion less  th ickness  of the frozen ice layer ;  
d imens ion less  t empe ra tu r e ;  
heat t r an s f e r  ra te  on the tube sur face ;  
convect ive heat  t r a n s f e r  ra te  at phase t ransi t ion interface;  
d imens ion less  heat  of phase t ransi t ion;  
l imi t  r e la t ive  value of f rozen layer ;  
in tegro-d i f fe ren t ia l  opera to r ;  
ope ra to r .  

S u b s c r i p t s  

k= 0, 1, 2 means  the r e su l t  of appropr ia te  approximat ion.  

I~ 

2. 

3. 
4. 
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